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The NMR “g-space” experiment conducted on water provides
information on the sizes of repeated structures on the micrometer-
length scale in heterogeneous samples, including cell suspensions
or tissues. Under some circumstances these plots display coher-
ence peaks, and it has been implied theoretically that the position
of the peaks will vary with the rate of molecular exchange across
the membranes. This has been demonstrated (qualitatively) with
human erythrocytes in suspension. Thus, in the quest for a quan-
titative approach to the interpretation of such data, we address
here the “inverse problem,” namely the estimate of the permeabil-
ity coefficient of membranes from g-space experiments. The
present work describes theoretical predictions of g-space plots
from molecules diffusing in a simple system of parallel semi-
permeable membranes arranged with separations that alternate
between two different values; this was designed to (loosely) mimic
the intra- and extracellular compartments in a suspension of cells
or a tissue. The development of the theory was facilitated by
symbolic computation, and the analysis of synthetic data was
shown to be achievable by the use of a three-layer back-propaga-
tion artificial neural network. © 1999 Academic Press
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INTRODUCTION

NMR magnet 8), heptane between glass microscope cover slip
(13), and the first natural (and cellular) system, suspensions
human erythrocytes).

An analysis of the dependence of the PFGSE signal intensgy or1
for spins diffusing between evenly spaced parallel planes has bet
presented by Tanned4). More recently, the solution for spins
diffusing between impermeable parallel planes has been addres
in the context ofg-space plots and diffusion—diffractiof,(15.

In the present work spatially periodic two- and four-region
systems, as depicted in Fig. 1, were considered. We derive
expressions that describe the dependence of the PFGSE NN
signal intensity on the spatial separation between the barriel
the diffusion coefficients of the molecules that carry the spins
and the rate constant (permeability) that characterizes the €
change across the barriers between the regions.

The “inverse problem” that is addressed by an experimentalis
in the present context, is a complicated one. It is the attempt
determine the values of the intrinsic diffusion coefficients of the
diffusing species in the various compartments of the sample, tt
physical dimensions of the spaces that restrict the diffusion, ar
the rate constants or permeabilities that characterize the exchar
between the compartments. Traditionally this problem would b
expected to be solved by regressing a mathematical function (t
explicitly involves the various parameters) onto the experiment:

The graph of NMR signal intensity in a pulsed field gradierdata. As will be seen below, the theory for even the relativel

spin-echo (PFGSE) experiment versus the scaled intensity of #i@ple system considered here entails a “formula” that describ
magnetic field gradient pulses constitutegiaspace plot” [(-5);  the NMR signal intensity as a function gfbut it is exceptionally
q = (2m) " ydg (units, m”), wherey is the nuclear magneto- complicated. However, the function is rapidly evaluated on :
gyric ratio, 8 is the duration of each of the two field gradientnodern computer so it is a realistic proposition to simulate th
pulses, andy is the magnitude of the field gradient pulses]. Thibehavior of the putative diffusion system.
experiment has been used to record the translational diffusionrherefore, the experimental data analysis entails training
behavior of solvents and solutes in heterogeneous systemsaiffificial neural network (ANN) with “synthetic” data that are
cluding yeast cells, human erythrocytes, and tissLigs, (). With  the result of evaluating the analytical expression for a range «
some samplesy-space plots display “coherence” peaks whosgarameter values that are presumed to encompass those |
maxima and minima occur gtvalues that bear a simple matheoccur naturally in the system under study. The “real” experi
matical relationship with the separation between the barrigffental data are then entered into the trained neural netwo
(membranes) that restrict the molecular diffusibn§—13. Thus, that then vyields as its output the set of parameter estimate
coherence effects have been demonstrated for isopentane diffysis approach to analyzing PFGSE data has been shown to
ing in 100.m capillaries that lie across the main fiek}, of the  viable for data from molecules diffusing in real homogeneous
and simulated heterogeneous, systerh§, 7). Hence, the

1 To whom correspondence should be addressed. E-mail: p.kuchel@biochBA€thod was demonstrated in the present work as being the
usyd.edu.au. retically viable for the systems under consideration.
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GENERAL THEORY A +
I
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Master integral. The aim of the analysis is to derive the mathe- ~ Region2'  Regjon1  Reglon2 Reglon3  Reglon4
matical expression that describes the dependence of the PFGSE] ' ! !
signal intensity on the experimental NMR parameters and the physgg | e |
ical parameters that describe the sample. The expression for the EEITERIE ST I B PN
spin-echo signal is obtained from the following integral that is eval- , L
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whereE[q, A] denotes the signal intensity in the PFGSE experiment
acquired withA being the time between the magnetic field gradient
pulses of duratios, andd < A. The latter implies the short gradient
pulse approximation that is the basis of the simple form of the
integral (e.g.5, 18 this integral contrasts with the more compli-
cated one used for relatively lar§ealues or even a constant field
gradient (e.g.19). The exponential term with its imaginary ex-
ponent already implies a solution that is periodi@m

P[ z,]dz, is the probability of a spin being located at at
the start of the diffusion-measurement period, &id,|z; A]
is as the conditional probability density. The normalized initial
spin-densityP[ z,] is simply the probability density of any
given coordinate on the specified interval; if the interval is [0, |
(a + b)/2], the probability density is 24 + b). <'—|r-*> Cla—p| o <)—I—(>

Master diffusion equation. The main mathematical task is to : -
determine the expression fBr In overview, the problem entails I
solving the self-diffusion equation, expressed in terms of the |
conditional probability density (e.dl4, 15, 19-21 In the present
contextP is a function of only timef, and one spatial Cartesian 0
coordinatez, that is in the direction of the magnetic field gradient
pulses used in the PFGSE experiment. Thus,
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L[Z = E [2] FIG. 1. System of periodically arranged parallel planes, with diffusion
dz at within each region and across the “membranes” (barriers) between them. T
membranes are separated by the alternating distanaadb. The possibility
P is a Green’s function and its use in solving the present clagigliffusive exchange between the regions is indicated by the solid double
of problem is described more fully elsewhere (elg, 22. headed arrows. The origin of the Cartesian coordinate systenzis-a, the
In more detail, Eq. [1] can be solved by using “separation erface between the central regions lieszat a/2, and the midplane of

. N . . . . egion 2 lies az = (a + b)/2, etc. (A) The shaded regions can be interpreted
variables,” which entails assuming tilatcan be Separated Ir""Oas being separated by parallel planes perpendicular to the page and, in the ¢

the PrOdUCt (?f tWO.fun(?tionS that depend exclusively on thg a suspension of cells (e.g., erythrocyt8s2), these planes correspond to
spatial coordinate (in this cageandz,), andt (e.g.,19). Thus the cell membranes. Regions 2 and &tc., correspond to the extracellular

the solution of the time-dependent equation is space in a cell suspension. B is the canonical two-region unit that was used
the boundary value problem discussed in the text. The vertical dotted line
T[t] _ exr{—wzt], [3] denote planes of symmetry in the regions and the solid lines denote tt

permeable plane (membrane) between them. The open double-headed arr

. . . indicate the free movement of spins across the imaginary planes of symme
where w is the so-called separation constant (or eigenvalu@y.each region (boundary value equations, Egs. [7a] and [7b]). C is th

SinceP decreases with timey is specified as being positive-canonical four-region unit used in the analysis that is described in the text.
real. The general solution of the spatial equation is

The overall solution is the product of Egs. [3] and [4],
wz wz : ;

Z2[z] = A co{ 6] +B sin[ h} _ 4 summe_zd over a series (_)f values of the separ_atlon constant.

\ analyzing the two-region system shown in Fig. 1B, we

N
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definez, = P, + Q,, Z, = P, + Q,; and for the dP, dP,., .

four-region system in Fig. 1C we defing, = P; + Qg, DiE . i+1 4z ) i=1...,3 [7c]
andZ, = P, + Q, where theP and Q functions are re- : o

ferred to assymmetricand antisymmetricseries solutions. _

This notation is used because when the boundary equa- D; (TZ" =MPi,—P) i=1,...,3, [7d]
tions (Egs. [7] and [8] below) are applied to the general 2=l z=lz

solution the leading term of one series is simply a cosine

function (an even function) and for the other boundary, ...\ _ o | = g2 |. = (a+b)2,1,=a2+b

conditions the leading term is a sine function (an odd _ a:- bl : 3a/2 +3b andl, — 3(6'1: b). The first
? 1 16 ’ 7 .

function). Thus the general solution is given by the sum Mo of these equations specify the fact that spins do nc
the series

pass out of the “outer” regions. Equation [7c] indicates tha
the fluxes of spins between Regions 1 and 2, Regions 2 at
B 3, and Regions 3 and 4 are each equal in either dire
. wnpZ .| @nZ 2 tion. Equation [7d] specifies the fact that the flux of spins
Pilz] = zl (A"”CO{ \/ﬁ] * B"“Sm{ \E])exp{ @ntl, across each interface (membrane) is proportional to th
difference betweer® on either side of the membrane; the
proportionality constant is the permeability coefficidvt
(units, m s'). The mass-transfer (or heat-transf&g) an-
where the system involves the diffusion coefficienls, alogue of this situation is readily visualized. There is also :
(units, nf s™*) such thatD; = D, andD, = D,. The for- counterpart to Eq. [7d] folP,, but it is redundant in the
mal expression for the antisymmetric solution is thanalysis.
same as for Eq. [5] but the different boundary value equa-The boundary conditions for the antisymmetric solu-
tions dictate that the separation constants; (eigen- tions are different from the first two above (Egs. [7a] anc
values) are different, as are the coefficients in the serig®b]) but the same as the others (Egs. [7c] and [7d]). Thei

i=1,2o0r1,...,4, [9]

Thus, physical interpretations are analogous to the previou
cases:
. {nZ |z =
77l = C 27 4D, i -2, Qudz=1,, =0, [8a]
QI[Z] zl ( I,HCO{ \’/SI I,nS|n|: \//EI:| > eXF{ gn ]

, dQ dQs

i=1,2o0r1,...,4. [6] D, = D, ,i=1,...,3, [8b]
dzl, todz |,
THEORY: PERIODIC FOUR-REGION SYSTEM dQ; .

Di dz =M(Qi11 — Q) yi=1,...,3. [8c]

z=13i z=l3

The system of parallel planes depicted in Fig. 1 can be
considered either as repeating units of two or four regions.
Since the two-region system is a subcase of the four-regionThe next step is to obtain the two boundary-conditior
one only the latter is analyzed in detail here. The next stéqanscendental equations that are solved to yield the roo
is to derive the boundary condition equations; these afeigenvalues),w, and {,, thus satisfying the boundary
similar to those used previously1 4, 15 but note that this equations. These are usually derived by applying the prc
earlier work did not consider unevenly spaced planes or, éess of “Gaussian elimination” to the two sets of homoge
the second reference, permeable planes. neous simultaneous linear algebraic equations in which tf

Boundary condition equations.These are “variables” are taken to be the coefficiems,, and B, ,,
and C;,, and D;,, respectively. This involves expressing
in matrix form both sets of eight boundary equations, usin

dpP

d—zl =0, [7a] the overall expressions foP (Eq. [7]) and Q (Eq. [8]),
z=h respectively. The derivation of the individual elements

4P of the matrices are straightforward but tedious and thi

T; =0, [7b] details, if required, can be requested from the correspondir

z=17 author.
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Roots of the two boundary condition transcendental equations.The coefficients of the symmetric and antisymmetric sp:
For Egs. [9] and [10] to have nontrivial solutions the determinatial equations. A reduced form of Eq. [9] was used to obtain
of their respective matrices must be zero. The expressions fioe expressions foA;, and B, , in terms ofA,,, and simil-
these determinants cannot be easily derived “by hand” but they for C;, and D,, in terms of D,, from Eq. [10]. The
are readily (and rapidly) derived by symbolic computation; inumerical values of these coefficients were obtained by sul
Mathematica(24), the Det function generates the analytical exstituting the relevant values @b, or ¢, into the expressions
pressions. In practice the determinants were left unexpressed and using Cramer’s rule on the determinant of the matrix t
were evaluated numerically for specified valuesapty, Dy, D,, vyield the values oA\ , andB,,,i = 2, ..., 4, and ofC, , and
andM. The determination of the roots was readily achieved by, ., i = 2, ..., 4, respectively. The matrix forms of the
using the FindRoot function operating on each determinant. equations are

0 0
5 { w,a ] 5 { wna ]
sin D,co
V2 \1D22 VTR \/622
/2 + b) w,(al2 + b)
e wn(a /7 n
N 2sm[ 7\/62 \ 2cos{ D
0 0
wy(a/2 + b) — wy(al2 + b) wy(a/2 + b) [w,(al2 + b) )
—sin ————|w,\D, + M co§ —————— cod ——— |w, D, + M sin| ————~
( S'”[ D2 | S{ /D2 JD2 U /D,2
L 0 0
0 0
0 0
[w,(a/2+ b) w,(a/2 + b)
o 5 - ooy “G
wy(3a/2 +Db wy(3a/2+b
#0925 PECIT)
\/Dl \'Dl
" w,(al2 + b) M si w,(al2 + b)
- CoO§ ——————— - SINf ——————
VD12 \D.2

( ) [wn(3a/2 + b)
—sinl ———
VD

b,

W(3a/2+ Db W(3a/2+ Db
\‘/Dl \/Dl

J(3a/l2+ b
®/D1 + M sin[w()])

\r‘

[wy,3(a+ b) w.3(a + b)
—sin| ————— cog ———
S! \//D22 \/622 _ -
0
0 0 [ A, ] a
2,n T~ . Wy,
0 0 iz'n \,/Dlsln[ \’EZ]
wn(3a/2 + b wn(3a/2 + b L= A, 0 . [11a]
\,@Sin[ (,—):| — \'/HZCO{ (/7):| BB,n ! 0
VD2 VD> Asn
0 0 - Ban 0
L 0 i
w,(3a/2 + b) [w,(3a/2 + b)
-Mcod ————| —Msinl————
VD2 \D: -



264

KUCHEL AND DURRANT

and
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Thus, from Eq. [11a]

n=1

w,Z
A, ,CO exd —w?t],
S A 4 Jext-

Similarly, the antisymmetric series solution, expressed in termr
of D,,, was obtained from Eq. [11b] by using Cramer’s rule.

The initial condition and the coefficients of the spatial equa
tions. The next task is to obtain the expressionsAqr, and
D, ,. First, the propagators for the four regions are added t
give the overall propagator

[12a]

and
* P=GyP;+ Q) + GyP, + Q)
P=> AFexd—w?t],i=2,...,4, [12b]
n=1 + G3(P3 + Qz) + G4(P, + Q), [13a]
where where
Fo=F|cod 2|, sin “2 || i=2 4. 12
= ‘[C"{ \E] ! S'”[ \EH 1220 4 (1] G =G[z Iy ld = Hlz— LJH[l.,— 2] [13b]
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and Equations [14b] and [14c] are combined and multiplied by
P™[z] + Q™[ z] and then integrated over the whole interval

0, z<lI [0, 3(a + b)/2]. This yields expressions fok,, and D, ,

Hlz— 1] = ‘ 1, z>1, [13c] because the integral on the right is nonzero only wimess n,

and from the “sampling” property of the delta functid@by, we

and obtain
< |
HIL- 2= | o0 22,7, [13d]

3(a+b)/2 3(a+h)/2
f 8[z—z,]P™[z]dz= A, f (P™[ z])%dz

and wherel andk are dummy indices, ankl > i. 0 0

In words, the unit step function has the value 1 when its
argument is positive, and zero when it is negative. The step [162]
“feature” resides where the argument is zero.

Because the system of equations is a Sturm—Liouville one (e.g.,
26, 27, the above cosine and sine functions are orthogonal on t%(]a
integration interval. Hence, the overall expressionHas

3(a+hb)/2 3(a+hb)/2
” 8[z—2,]Q™[z]dz=D,, (QM[z])?dz
P=2 {AP"[z]lexd —wit] + D, Q" Zlexd {7t} JO LT mlQ Lz : L o
n=1
[14a] [16b]
where we define the orthogonal functions as
Hence,
P™W=P,Gi[z |y, 1] + P,Gy[ Z |5 1,]
+ P3Gy Z; 14, 6] + PsG4[ Z; 16, 7] [14b] 3(a+b)/2
P™[ 2] = Ay, (P™[z])%dz, [16c]
and 0
Q(n) = Q.G z Iy, L] + Q.G Z I, 14]
and
+ Q3G Z; 14, I6] + QuGul Z; 16, 1] [14c]
Second, the initial condition is that of the planar delta-function I
source 19, 28, 29, thus, Q™[ z] = Dy, J (Q™[ z]) %dz. [16d]
0

8lz— 2] =2 {AP"[2] + D, Q"[z]}. [15]
n=1 Thus, in expanded form, the expression Aar, is
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whereE is the determinant of the matrix in Eq. [11a], anadolumn of constants on the right-hand side of Eq. [113]
E, is this determinant with théth column replaced by the Specifically,
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and
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whereV is the determinant of the matrix in Eq. [11b] add The Heaviside step-functions (Egs. [13b] and [13c]) assoc
is the determinant with thigh column replaced by the columnated withP, and Q, restrict the domain of integration to [0,
of constants, as in Eq. [16f] above. a/2], and forP, andQ, to [a/ 2, (a + b)/2], etc., forP; and
The Spin-echo signal. The expression for the PFGSE sigQ;, andP, andQ,. Then Eq. [17a] is evaluated by using the
nal intensity,E[q, A], is obtained by substituting the expres+eal part of the Euler identity for the exponential part of the

We\ [ lnZo

5]
Lo

a/2+b

sions forP andQ into Eqg. [1]. Thus, expression, i.e., cosf(z — z,)]. Thus, we define
3(a+h)/2 [ 3@+b/2 4
Elq, A] = 3(a+b)J f (Z G;(P Elq, A] = Ej[q, A] + Ej[q, A] + Es[q, A] [17D0]
0 0 i=1
+ Q))exdi2mwq(z — z,)]dzdz. [17a] and

. 2 1 al2 (J)nZO
Bl A =5 o) 9D,
0

al2 [ wizo] [¥2° (2, w,Z 2, [wz
+ coy - B B + 5= sin o exd —w2A]cog2mq(z — z,)]dzdz
0 LT e . -

¥2 - Twze] [3¥20 (B, wnZ B, [ wsz )
+ cog D = Co D + = sin R exg —wiAlcog 27q(z — z)]dzdz
L et \" 1 e
0 al2+b
. J‘afz [ w0nZo] fS(a+b)/2 (Es {wnz ]
COS = COo
= D.
0 L V/Hl 3a/2+b VD1
N y2eb = wnZo N B, [ a2 w,Z 2 ) dad
) = co V/Di = sin D co D exg —wiA]cog 27q(z — z)]dzdz
2 0

al2+b /' = al2+b /' =
=11 wnZoy Zo | W7y = 2o | wZ
+ <: CO{ /D— + = S|n|: ] ) (: { ﬁ:| + = S|n|: /D—
a2 =1 \/ 1 =1 f— \ =l \j 1

X exfl—w2A]cod27q(z — z,)]dzdz

) exd —w?2A]cog27q(z — z,)]dzdz

-

N

+ - - -10 more terms consisting of combinations of integrals over the four domainssefl previously,

[17c]
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where® is the denominator of Eq. [16€]. A similar expressiorA
exists forE,[q, A] based onQ.

The final subexpressiort;[q, A], which is readily ob-
tained, arises because the ragt = 0 is “allowed.” Thus the
additional term is

Eslq, A]

Log,(Elg. AD

2 3(a+h)/2 3(a+hb)/2
= 3a+b) J f cog§2mq(z— zy)]dzdz
0 0

_ 3(a+ b))\ 2
S|n|: m(q 2:|

= 3atb |- [17d]

B S

The final, overall expressiok,[q, A] + E,[q, A] + E;[q,
A], derived from Eqgs. [17a]-[17d], was obtained by using
Mathematica(23). Because of its complicated nature it is not

reproduced here; however, it was evaluated in a program Wy

. . . . . . . <3 . v / ;'4, / <
ystems wih various valves ot b, D Dy andnt (ee S o S A G
Results and Discussion). B %, STy

s |
-4
METHODS

Computational methods.The derivationsof many of the (105 2
formulae used in the analysis, and the final program used to 7U0%x m-1) 0
evaluate the expression fE{q’ A] (Eq' [17])’ were written in FIG. 2. Family ofg-space plots, generated using the analytical theory (Eq
Mathematica(24).

. . ) [17]), showing the dependence of their form on variations of the membran
The random walksimulations employed the basic procepermeability,M. The separation between the membranes in Region(s) 1 we

dures that have been described previou&h).(However, the settoa =5 um and that for Region(s) 2 was= 2.5 um; the values of the
program was rewritten in Matlat8() and the random-number diffusion coefficients wer®, = D, = 1.0 x 10° m*s ™ andA = 10 ms.

. « » . (A) Solutions for the periodic two-region system as depicted in Fig. 1B. (B)
generator was that provided by the “rand fun.ctlon. Solutions for the four-region periodic system as depicted in Fig. 1C.

The neural networkwas selected from one in the “Neural

Network Toolbox” @0) in Matlab 31); it was a back-propa-
gation algorithm using the Levenberg—Marquardt minimizderminants in Egs. [9] and [10]). The infinite-polynomial series
tion procedure. The neural network entailed 50 input elemerg@nverged rapidly with the “physically realistic” parameters
and was trained with a set of 10 input vectors that wetsed for the various figures shown herein; routinely only fou
obtained from théVlathematicasimulations, using 50 different Or six terms ¢ = 4 or 6 in Eq. [17]) were used to obtain the
g-values, selected values afb, D,, andD,, and 10 different solutions. The relative contributions of tikeand Q solutions
values ofM. Thus by a process of trial and error, guided by & the overall result were also of interest; in general the fin
compromise between the rate of convergence of the “trainingelution was dominated by that &f
process and the quality of the “fit” to “test” input data, the Dependence of the form of g-space plots on membrar
number of hidden neurodes was set to 6. The maximum nupermeability, M; a/b ratio a small integer. Figure 2A shows
ber of “epochs” used for training was 300, and the “targeti series ofj-space plots, graphed as a 3-dimensional surfac

tolerance was set to 1.8 10°°. for spins diffusing in a system of parallel planes with separa
tions that alternated between 5.0 and 2rB. The permeability
RESULTS values used to generate the figures encompassed those

served experimentally for water-L0* m s™*; 32), monova-
Evaluation of Eq. [17]. The solution of the problem ex- lent anions such as chloride, bicarbonate, and fluorie2 X
pressed by Eq. [17] was programmedathematica24). The 10" m s*; 33), glucose ¢4 X 107’ m s *; 34), and ammonia
slowest part of the evaluation was the systematic finding of the2 X 10° m s*; 35). The diffusion coefficients were as-
roots of the transcendental equations (i.e., evaluating the degned a value similar to that of water, and low-molecular
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weight solutes at 37°CLg), and they were made equal toxL A Y

8 - . T

9 2 -1 7 /&f"/
1O|:' m’s™. ///2’7;///4://{5‘?@ T

igure 2B showsg-space plots for the same scheme of ///,,////////,,%f:{?ﬁé’
parallel planes as above (Fig. 2A) but with the analysis carried %’/&%gg& g 7
out for a system with a periodicity of four regions. When the //;//f/f//éjg/,/x{},%@%/ 0 v N
permeability is very large the membranes are effectively %ﬁ’//ﬁ%’f////}/ﬁ%f/% %@éf%{% /
arge e membr .. v
“transparent” to the diffusing spins, so it was not surprising '{Z%jf%’%@’%%/%ﬁéj%@%n
that the coherence-pattern conformed to that expected foria 2 % WM%{%&@ >
Z %ﬁ/y@//f% )

periodicity (relative location of the minima in the plots) that &

ﬂ%&ﬁﬁ% /f%:{f,’y’;’/’

was consistent with 2& + b) = 2/(7.5um) = 266,000 m* 2 4 )/’;?%”f%}y é/jj;é;, -
(for Fig. 2A) and3/[2(a + b)] = 3/(2 X 7.5 um) = 88,000 & %j@%@/ s‘?
m~* (for Fig. 2B); the latter appear as small “ripples” on the ”%};f @k
plot. On the other hand, when the membrane permeability was 1 \?of

very low, the coherence pattern corresponded to that of a
system with an effective half-separation of the membranes of
a/2 andb/2. The latter two distances for Figs. 2A and 2B
differed by a factor of 2 so a very regular overall coherence
pattern was apparent when there was superposition of the
diffraction patterns for 1.25 and 2,6m. Hence the minima B
from bothcompartments would be expected to coincidg at
1/(1.25um) = 800,000 m*, and this is evident in both Figs.
2A and 2B.

Dependence of the forms of g-space plots on permeability,
M; ratio a/b a noninteger. For Figs. 3A and 3B, the separa- .
tion between the parallel membranes was set to 5 um and <
b = 4.8 um. The coherence pattern for the situation in whichE

- @%%%%@%g 7
T /.f?// (‘ggo%ggﬁge@{&‘/
g

there was a very high permeability gave a pattern that corre‘%ﬁ; I
sponded togd + b)/2 = 4.9umand 3@ + b)/2=9.8um 3 T\ ",;’fg,f’ D
for the two figures, respectively. On the other hand, when the 0 / / &
i nositi 2 )
permeability was low the superimposition of the two coherence B 90 &

patterns led to a much more complex pattern than for the 20
counterparts in Fig. 2. This is because of the lack of a small 0=
integer relationship between the two spacings, namely 24:25 0 °

instead of 2:1 for Figs. 2 and 3, respectively.

Figure 4 was generated to provide a further impression of th&!G. 3. Family of g-space plots for a range of membrane permeabilities
but with membrane separations that were different from those used in Fig. .

dependgnce of the shape _Of m_respace Plo_ts On_ variations InAII parameters used in the simulation were the same as for Fig. 2 elicept
the relative values of the diffusion coefficients in the compar-g ,m, and the graphical-output “viewpoints” were changed to give a cleare
ments on either side of the membrane. The basic models wifgression of the plots with lowM values. (A) Two-region system. (B)
those used for Fig. 3 but withl fixed at 1.0X 10 ®m s*. It Four-region system.

was apparent that only when the value of the diffusion coeffi-

cient was such that it was not much greater th&2D, did the

pattern show any significant dependence on the value ,of

Both the two- and the four-region solutions clearly showed¥ the value ofM for the larger values used to generate it, &
“major’” minimum atq = 800,000 m™. new set of data was generated for whidhlay in the domain

) 2.0 X 10*to 2.0 X 10°* m s*. The simulated data had
Effect ofA on the form of g-space plots.Figure 5 shows 5 ifferent g-values, hence the ANN had 50 input neu-
that changing\ to a larger value, relative to that used for Figroqes  and it had a hidden layer of 6 fully interconnecte
3, smooths therspace plots; it also changes teposition at o \rodes that had sigmoidal transfer functions; and the sing
which the corrie (start of the ‘glacial’ valley) appears in th, i neurode had a linear transfer function. The input-vecto
3-dimensional plot. Thus the range Mif values for which the ¢ the ANN were the natural logarithms of the relative PFGSE
experiment is sensitive is shifted to a lower mean. NMR signal intensities versug, and the ANN was trained to
Analysis of simulated data.The model used to generateyield the value of the permeability that had been used t
Fig. 2A was used to provide data to train an artificial neurglenerate each original data vector. The ability of the traine
network (ANN; see Methods). Because it was clear that t#eNN to yield correct estimates of the permeability coefficient
form of theqg-space plots in Fig. 2A were largely independerfbr each simulated experiment was tested by applying to it th
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results of a simulated experiment for which the value of the O
permeability coefficient lay close to but was not one of theséx M
values (it, of course, lay within the overall range of those used 100

for generating Figs. 2A and 2B). An example of one training
“run” which took ~5 min to complete shows the actual value

of M (10" X m s™) used to generate the original training § p 7 &
vectors (data set) and the value returned by the trained ANI\E Ny 7 ’%;;;;//l@t,
when it was “fed” the original data, respectively: 2.0, 2.0; 2.95, E‘é e

2.95; 3.89, 3.89; 4.84, 4.8036; 5.79, 6.1855; 6.75, 6.6116; 7.68% -
7.428; 8.63, 8.6885; 9.58, 9.2393; 14.32, 13.681. In addition,
for example, when data from a simulation for which the value
of M lay between those of the last two above (viz., 1063
107" m s™) the “returned” value was 9.7134 10 *m s ™. 2 (105x gty

Monte Carlo simulations of diffusion between permeable
parallel planes. Matlab was used to program the random-
walk simulation of a system involving molecular diffusion in a
region enclosed by a pair of parallel planes. It was assum
that the diffusion trajectory began in the region between the
planes but that it could proceed beyond them by permeating the

<
«9/{;;////3‘

o ),
4 7 ’{?‘*@@ é{;’/}, éﬁ’ é.{j// «f;}’ *///'
A o O o
T e
3 ‘L L4
\:% -4 "& %@/}éﬁ%ﬁg@%ﬁ%&%y N
Y ! ,Z,//’{’/';/,;/m;{?}’ - éf’ g
S /Z///é ;j/” ’5{?6 w{é’/g% z &
= . >
=]

FIG.5. The effect of increasing from 10 ms (in Fig. 3) to 100 ms on the
g-space plots. All other parameters used in the evaluations were the same as
the respective panels in Fig. 3. (A) Two-region periodicity and (B) four-regior
periodicity. Note that different “viewpoints” were used for each panel.

membranes according to a previously specified transition prol
ability. Alternatively, the system could be treated as a purel
two-region one with no exchange across the “outer” walls
Figure 6 (dots) shows thg-space plots predicted for the latter
system consisting of 1x 10° different trajectories. When
periodic boundary conditions were applied the result, for th
particular set of (biochemically realistic) values used, showe
very little difference (data not shown). In other words, the
two-region approximation is a “good” one for systems similal
to water and low-molecular-weight solutes diffusing in anc
around cells in tissues or erythrocytes in a suspension.
Figure 6 also contains data that served to validate the an

FIG. 4. Evaluations of the analytical solution for the periodic two-regionytical solution shown by the solid line (Eg. [17]). There was a
system showing the dependence of the form of the plots on the value of

L : . ‘
diffusion coefficientD,, of the spins in the second region. The valud/ofvas a%se Sl_mllamy for SOIUU_OnS Obta.med by bOth. methOdS.' but th
1.0 X 10° m s, and the other parameters were as for Fig. 2A. (Afvaluation of the analytical solution was achieveti0O times
Two-region periodicity and (B) four-region periodicity. faster.

Lng(E[q: A])
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q (105x m1) The procedure to demonstrate the proposed data analy
0 ) 4 P (fitting) that uses an ANN was applied to gs_tlmate only on
‘ parameter. The much more difficult task of fitting two or more
parameters is potentially complicated by nonuniqueness of tt
fits and only weak dependence of the various features of tt
g-space plots on particular parameter values. This area

%\ ! analysis of “real/experimentalj-space plots requires further

S development.

) 2 Monte Carlo simulations of diffusion between permeabl

b% parallel planes. The time taken to generate thlespace

_3 plots using a random-walk simulation of diffusion was sig-
3 nificantly greater than for evaluations of the analytical so

lutions; the time difference was 100-fold (depending on

the number of trajectories used in the random-walk analy
FIG. 6. Comparison of the analytical solution (Eg. [17]; solid line) for asis). This outcome implies that although the analytical so

two-region periodicity (data from Fig 2A) and a random-walk simulationytion (Eq. [17]) is very complicated, the time taken for its

(dots) for two compartments with a separating membrane. For this particul 5| ation is substantially less than that required to perforr
pair of evaluations/simulations the permeability of the membranes was mad

high (M = 0.1 m s* for the analytical solution, and a transition probability.ae'vIonte Carlo random-walk §|mulat|on of the correspond
of 0.9999 was used for the Monte Carlo simulation). ing system. Hence, to provide data for the purposes c
training an ANN, the analytical solution is superior. How-
ever, if the real system is not well described by the analyt
ical system then it will be necessary to resort to the Mont

Dependence of the forms of g-space plots on membra%aéIrlo procedured?, 39.

permeability; ratio a/b a small integer. The first minima Conclusions. The analytical _solutions that have been pre-
evident in the coherence patterns of Fig. 2, when the diffusi§§nted h“ere _en_at:le the simulationge$pace plots for systems

spins were confined to move only between, and not throuéh?‘t are “realistic” but admittedly only relatively loose models
the membranes. were at®and 2b. This outcome is consis- of a suspension of cells or a tissue. Nevertheless, evaluation
tent with the simulated results presented by Callagr®n (the solutions pr_ovides insights into the effec_t§ of changes i
taking special note of the way the boundary conditions were SBgmPrane spatial arrangement and permeability on the form
up here. For the simulations in which the membranes wefeSPace plots, in a manner that appears not to have be

specified as being very permeable the effective spacing lgesented before.
tween the barriers becama ¢ b)/2 for the simulated two-
region system and 3(+ b)/2 for the four-region system. This ACKNOWLEDGMENTS
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